4.6 Article

Propulsion of a domain wall in an antiferromagnet by magnons

Journal

PHYSICAL REVIEW B
Volume 90, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.104406

Keywords

-

Funding

  1. National Science Foundation [DMR-1104753, DMR-0840965, PHY-1125915, PHY-1066293]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1104753] Funding Source: National Science Foundation
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [0840965] Funding Source: National Science Foundation

Ask authors/readers for more resources

We analyze the dynamics of a domain wall in an easy-axis antiferromagnet driven by circularly polarized magnons. Magnons pass through a stationary domain wall without reflection and thus exert no force on it. However, they reverse their spin upon transmission, thereby transferring two quanta of angular momentum to the domain wall and causing it to precess. A precessing domain wall partially reflects magnons back to the source. The reflection of spin waves creates a previously identified reactive force. We point out a second mechanism of propulsion, which we term redshift: magnons passing through a precessing domain wall lower their frequency by twice the angular velocity of the domain wall; the concomitant reduction of the magnons' linear momentum indicates momentum transfer to the domain wall. We solve the equations of motion for spin waves in the background of a uniformly precessing domain wall with the aid of supersymmetric quantum mechanics and compute the net force and torque applied by magnons to the domain wall. Redshift is the dominant mechanism of propulsion at low spin-wave intensities; reflection dominates at higher intensities. We derive a set of coupled algebraic equations to determine the linear velocity and angular frequency of the domain wall in a steady state. The theory agrees well with numerical micromagnetic simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available