4.6 Article

Spin-resolved optical conductivity of two-dimensional group-VIB transition-metal dichalcogenides

Journal

PHYSICAL REVIEW B
Volume 90, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.245411

Keywords

-

Funding

  1. Max Planck-EPFL Center for Molecular Nanoscience and Technology
  2. Swiss National Supercomputing Centre (CSCS) [s337]
  3. EU through the Graphene Flagship program [CNECT-ICT-604391]
  4. SNS Internal Project
  5. Italian Ministry of Education, University, and Research (MIUR) [RBFR10M5BT]

Ask authors/readers for more resources

We present an ab initio study of the spin-resolved optical conductivity of two-dimensional (2D) group-VIB transition-metal dichalcogenides (TMDs). We carry out fully relativistic density-functional-theory calculations combined with maximally localized Wannier functions to obtain band manifolds at extremely high resolutions and focus on the photoresponse of 2D TMDs to circularly polarized light in a wide frequency range. We present extensive numerical results for monolayer TMDs involving molybdenum and tungsten combined with sulfur and selenium. Our numerical approach allows us to locate with a high degree of accuracy the positions of the points in the Brillouin zone that are responsible for Van Hove singularities in the optical response. Surprisingly, some of the saddle points do not occur exactly along high-symmetry directions in the Brillouin zone, although they happen to be in their close proximity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available