4.6 Article

Topological transition and edge states in HgTe quantum wells from first principles

Journal

PHYSICAL REVIEW B
Volume 89, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.195312

Keywords

-

Funding

  1. Austrian Fond zur Forderung der Wissenschaftlichen Forschung [SFB 25]

Ask authors/readers for more resources

(HgTe)(N)(CdTe)(M)(110) and (001) superlattices are studied by means of ab initio calculations versus the thickness of the HgTe quantum wells (QWs). The used approximate quasiparticle theory including spin-orbit coupling (SOC) gives the correct band ordering, band gap, and SOC splitting for bulk HgTe and CdTe. The resulting band discontinuities indicate confinement also for occupied states. In agreement with earlier k . p calculations and experiments we find a topological transition from the topological nontrivial quantum spin Hall state into a trivial insulator with decreasing QW thickness. The spatial localization near the interfaces and the spin polarization are demonstrated for the edge states for QWs with thicknesses near the critical one. They do not depend on the QW orientation and are therefore topologically protected. Below the critical QW thickness, the trivial insulator exhibits drastic confinement effects with a significant gap opening. We show that the inclusion of inversion symmetry, the nonaxial rotation symmetry of the QWs, and the real QW barriers lead to some agreement but also significant deviations from the predictions within toy models. The deviations concern the critical thickness, the number and localization of edge states, and the possibility to find QW subbands between edge states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available