4.6 Article

Green's function studies of phonon transport across Si/Ge superlattices

Journal

PHYSICAL REVIEW B
Volume 89, Issue 23, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.235307

Keywords

-

Funding

  1. S3TEC, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-09ER46577]

Ask authors/readers for more resources

Understanding and manipulating coherent phonon transport in solids is of interest both for enhancing the fundamental understanding of thermal transport as well as for many practical applications, including thermoelectrics. In this study, we investigate phonon transmission across Si/Ge superlattices using the Green's function method with first-principles force constants derived from ab initio density functional theory. By keeping the period thickness fixed while changing the number of periods, we show that interface roughness partially destroys coherent phonon transport, especially at high temperatures. The competition between the low-frequency coherent modes and high-frequency incoherent modes leads to an optimum period length for minimum thermal conductivity. To destroy coherence of the low-frequency modes, scattering length scale on the order of period length is required. This finding is useful to guide the design of superlattices to reach even lower thermal conductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available