4.6 Article

Time-harmonic optical heating of plasmonic nanoparticles

Journal

PHYSICAL REVIEW B
Volume 90, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.035439

Keywords

-

Funding

  1. research French agency ANR grant Tkinet [ANR 2011 BSV5 019 05]

Ask authors/readers for more resources

Under illumination at their plasmonic resonance wavelength, metal nanoparticles can turn into efficient nanosources of heat by light absorption. Heating a small volume makes it possible to achieve fast dynamics. In this paper, we investigate theoretically, numerically, and experimentally the temperature distribution of a plasmonic system generated by a modulated incoming light. In particular, we study the response in amplitude and phase of the temperature variations. The cases of single and multiple nanoparticles are both addressed. Many parameters are discussed such as the nature of the media (nanoparticle and surroundings), the size of the nanoparticle or of the plasmonic system, the nanoparticle interdistance, the frequency of the modulation, a possible finite surface thermal conductivity of the nanoparticles, and the dimensionality of the system. This work is also intended to determine how fast a plasmonic system is able to induce temperature variations in its surrounding medium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available