4.6 Article

Spontaneous parity breaking in spin-orbital coupled systems

Journal

PHYSICAL REVIEW B
Volume 90, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.081115

Keywords

-

Funding

  1. Strategic Programs for Innovative Research (SPIRE)
  2. MEXT
  3. Computational Materials Science Initiative (CMSI), Japan
  4. [24340076]
  5. Grants-in-Aid for Scientific Research [12J09153] Funding Source: KAKEN

Ask authors/readers for more resources

Effects of spontaneous parity breaking by charge, spin, and orbital orders are investigated in a two-band Hubbard model on a honeycomb lattice. This is a minimal model in which the interorbital hopping, atomic spin-orbit coupling, and strong electron correlation give rise to fascinating properties, such as the magnetoelectric effects, quantum spin Hall effect, and spin or valley splitting in the band structure. We perform the symmetry analysis of possible broken-parity states and the mean-field analysis of their competition. We find that the model at 1/4 filling exhibits a spin-orbital composite ordered state and a charge ordered state, in addition to a paramagnetic quantum spin Hall insulator. We show that the composite ordered phase exhibits two types of magnetoelectric responses. The charge ordered state shows spin splitting in the band structure, while the topological nature varies depending on electron correlations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available