4.6 Article

Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3

Journal

PHYSICAL REVIEW B
Volume 88, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.165203

Keywords

-

Funding

  1. National Science Foundation [DMR-1104595]
  2. Air Force Office of Scientific Research [FA-9550-12-1-0441]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1104595] Funding Source: National Science Foundation

Ask authors/readers for more resources

The halide perovskites CsSnX3, with X = Cl, Br, I, are investigated using quasiparticle self-consistent GW electronic structure calculations. These materials are found to have an inverted band structure from most semiconductors with a nondegenerate s-like valence band maximum (VBM) and triply degenerate p-like conduction band minimum (CBM). The small hole effective mass results in high hole mobility, in agreement with recent reports for CsSnI3. The relatively small band gap changes from Cl to Br to I result from the intra-atomic Sn s and Sn p characters of the VBM and CBM, respectively. The latter is also responsible for the high oscillator strength of the optical transition in these direct-gap semiconductors and hence a strong luminescence and absorption. The band gap change with lattice constant is also anomalous. It increases with increasing lattice constant, and this results from the decreasing valence band width due to the decreased Sn s with anion p interaction. It leads to an anomalous temperature dependence of the gap. The changes in band gap in different lower-symmetry crystallographic phases is studied. The exciton binding energy of the free exciton, estimated from the Wannier-Mott exciton theory and the calculated dielectric constants and effective masses, is found to be two orders of magnitude smaller than previously claimed in literature, or of the order of 0.1 meV. The photoluminescence peak previously assigned to the free exciton is instead ascribed to an acceptor bound exciton. The phonons at the Gamma point are calculated as well as the related enhancement of the dielectric constants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available