4.6 Article

Bulk-boundary correspondence for chiral symmetric quantum walks

Journal

PHYSICAL REVIEW B
Volume 88, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.121406

Keywords

-

Funding

  1. European Social Fund
  2. Hungarian National Office for Research and Technology [ERC_HU_09OP-TOMECH]
  3. Hungarian Academy of Sciences (Lendulet Program) [LP2011-016]
  4. Japan Society for Promotion of Science [25800213, 25390113]
  5. Grants-in-Aid for Scientific Research [25800213] Funding Source: KAKEN

Ask authors/readers for more resources

Discrete-time quantum walks (DTQW) have topological phases that are richer than those of time-independent lattice Hamiltonians. Even the basic symmetries, on which the standard classification of topological insulators hinges, have not yet been properly defined for quantum walks. We introduce the key tool of time frames, i.e., we describe a DTQW by the ensemble of time-shifted unitary time-step operators belonging to the walk. This gives us a way to consistently define chiral symmetry (CS) for DTQW's. We show that CS can be ensured by using an inversion symmetric pulse sequence. For one-dimensional DTQW's with CS, we identify the bulk Z x Z topological invariant that controls the number of topologically protected 0 and pi energy edge states at the interfaces between different domains, and give simple formulas for these invariants. We illustrate this bulk-boundary correspondence for DTQW's on the example of the 4-step quantum walk, where tuning CS and particle-hole symmetry realizes edge states in various symmetry classes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available