4.6 Article

Relaxation dynamics in laser-excited metals under nonequilibrium conditions

Journal

PHYSICAL REVIEW B
Volume 87, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.035139

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft through the Emmy Noether Project [RE 1141/11-1]

Ask authors/readers for more resources

When an ultrashort laser pulse irradiates a metal, energy is absorbed by the electron system which is driven out of thermal equilibrium on a femtosecond time scale. Due to electron-electron collisions, a new thermodynamical equilibrium state within the electron system is established in a characteristic time, the so-called thermalization time. The absorbed energy of the electrons will be further transferred to the phononic system. The thermalization time as well as the electron-phonon coupling strength both strongly depend on the material properties and the excitation type. Furthermore, a nonthermalized electron gas couples differently to the phononic system as a thermalized one. In order to follow the relevant microscopic dynamics without the need to assume thermalized electrons, we apply complete Boltzmann collision integrals to describe the transient electron distribution due to excitation, thermalization, and relaxation. We implement the density of states of real materials in our approach. As a result of our simulations, we extract the electron thermalization time and the electron-phonon coupling under nonequilibrium conditions. Examples are given for aluminum, gold, and nickel. DOI: 10.1103/PhysRevB.87.035139

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available