4.6 Article

Entanglement spectroscopy of SU(2)-broken phases in two dimensions

Journal

PHYSICAL REVIEW B
Volume 88, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.144426

Keywords

-

Funding

  1. DFG through NIM
  2. DFG [SFB/TR 12]

Ask authors/readers for more resources

In magnetically ordered systems, the breaking of SU(2) symmetry in the thermodynamic limit is associated with the appearance of a special type of low-lying excitations in finite-size energy spectra, the so-called tower of states (TOS). In the present work, we numerically demonstrate that there is a correspondence between the SU(2) tower of states and the lower part of the ground-state entanglement spectrum (ES). Using state-of-the-art density matrix renormalization group (DMRG) calculations, we examine the ES of the 2D antiferromagnetic J(1)-J(2) Heisenberg model on both the triangular and kagome lattice. At large ferromagnetic J(2), the model exhibits a magnetically ordered ground state. Correspondingly, its ES contains a family of low-lying levels that are reminiscent of the energy tower of states. Their behavior (level counting, finite-size scaling in the thermodynamic limit) sharply reflects TOS features, and is characterized in terms of an effective entanglement Hamiltonian that we provide. At large system sizes, TOS levels are divided from the rest by an entanglement gap. Our analysis suggests that (TOS) entanglement spectroscopy provides an alternative tool for detecting and characterizing SU(2)-broken phases using DMRG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available