4.6 Article

Large spin splitting in the conduction band of transition metal dichalcogenide monolayers

Journal

PHYSICAL REVIEW B
Volume 88, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.245436

Keywords

-

Funding

  1. MEC-Spain [FIS2010-21883-C02-01]
  2. Generalitat Valenciana, Prometeo [ACOMP/2010/070]
  3. FEDER
  4. Marie-Curie-ITN [607904-SPINOGRAPH]

Ask authors/readers for more resources

We study the conduction band spin splitting that arises in transitionmetal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that-in contrast to the valence band-both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available