4.6 Article

RKKY interaction in carbon nanotubes and graphene nanoribbons

Journal

PHYSICAL REVIEW B
Volume 87, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.045422

Keywords

-

Funding

  1. Swiss NSF
  2. NCCR Nanoscience
  3. NCCR QSIT

Ask authors/readers for more resources

We study Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes (CNTs) and graphene nanoribbons in the presence of spin-orbit interactions and magnetic fields. For this, we evaluate the static spin susceptibility tensor in real space in various regimes at zero temperature. In metallic CNTs, the RKKY interaction depends strongly on the sublattice and, at the Dirac point, is purely ferromagnetic (antiferromagnetic) for the localized spins on the same (different) sublattice, whereas in semiconducting CNTs, the spin susceptibility depends only weakly on the sublattice and is dominantly ferromagnetic. The spin-orbit interactions break the SU(2) spin symmetry of the system, leading to an anisotropic RKKY interaction of Ising and Dzyaloshinskii-Moriya form, aside from the usual isotropic Heisenberg interaction. All these RKKY terms can be made of comparable magnitude by tuning the Fermi level close to the gap induced by the spin-orbit interaction. We further calculate the spin susceptibility also at finite frequencies and thereby obtain the spin noise in real space via the fluctuation-dissipation theorem. DOI: 10.1103/PhysRevB.87.045422

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available