4.6 Article

Thouless theorem for matrix product states and subsequent post density matrix renormalization group methods

Journal

PHYSICAL REVIEW B
Volume 88, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.075122

Keywords

-

Funding

  1. Research Foundation Flanders
  2. National Science Foundation [SI2-SSE:1265277]
  3. Office of Advanced Cyberinfrastructure (OAC)
  4. Direct For Computer & Info Scie & Enginr [1265278] Funding Source: National Science Foundation

Ask authors/readers for more resources

The similarities between Hartree-Fock (HF) theory and the density matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function Ansatz. Linearization of the time-dependent variational principle near a variational minimum allows to derive the random phase approximation (RPA). We show that the nonredundant parameterization of the matrix product state (MPS) tangent space [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)] leads to the Thouless theorem for MPS, i.e., an explicit nonredundant parameterization of the entire MPS manifold, starting from a specific MPS reference. Excitation operators are identified, which extends the analogy between HF and DMRG to the Tamm-Dancoff approximation (TDA), the configuration interaction (CI) expansion, and coupled cluster theory. For a small one-dimensional Hubbard chain, we use a CI-MPS Ansatz with single and double excitations to improve on the ground state and to calculate low-lying excitation energies. For a symmetry-broken ground state of this model, we show that RPA-MPS allows to retrieve the Goldstone mode. We also discuss calculations of the RPA-MPS correlation energy. With the long-range quantum chemical Pariser-Parr-Pople Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation energies for polyenes are obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available