4.6 Article

Electronic structures and phonon free energies of LaCoO3 using hybrid-exchange density functional theory

Journal

PHYSICAL REVIEW B
Volume 87, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.125132

Keywords

-

Funding

  1. EPSRC [DT/E01013X/1, EP/D504872]
  2. Imperial College High Performance computer system
  3. EPSRC [DT/E01013X/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [DT/E01013X/1] Funding Source: researchfish

Ask authors/readers for more resources

Hybrid-exchange density functional theory has been used to model the electronic structure of LaCoO3. Based on a rhombohedral unit cell of R (3) over barc symmetry containing two Co atoms we find a mixed spin phase, comprising alternating low and high spin Co+3 ions, with a total energy at 0 K just 57 meV per formula unit above that of a nonmagnetic semiconducting ground state. In the mixed spin phase the high-spin Co+3 ions have spin moments of 3.1 mu(B) and the state is insulating with a band gap of 2.2 eV. Our calculations suggest that the effective on-site Coulomb repulsion energy U-eff on Co+3 ions is spin dependent. The U-eff on Co+3 ions is 7.1 eV and 8.5 eV for the nonmagnetic ground state and for the magnetic high spin state, respectively. For the mixed spin state, two different Ueff are estimated for two Co+3 ions in the unit cell having different spin states, 8.0 eV for the high-spin Co+3 ion and 7.0 eV for the low-spin Co+3 ion. An estimate of the harmonic phonon free energy suggests that this mixed spin phase would become the more stable phase as the temperature increases, which is consistent with experimental evidence. An alternative intermediate spin state is higher in energy at all temperatures. DOI: 10.1103/PhysRevB.87.125132

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available