4.6 Article

Free-carrier relaxation and lattice heating in photoexcited bismuth

Journal

PHYSICAL REVIEW B
Volume 87, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.075429

Keywords

-

Funding

  1. US Department 783 of Energy [DE-FG02-00ER1503]
  2. National Science Foundation FOCUS physics frontier center
  3. Science Foundation Ireland
  4. [NSF-DMR-0604549]

Ask authors/readers for more resources

We report ultrafast surface pump and interface probe experiments on photoexcited carrier transport across single crystal bismuth films on sapphire. The film thickness is sufficient to separate carrier dynamics from lattice heating and strain, allowing us to investigate the time scales of momentum relaxation, heat transfer to the lattice, and electron-hole recombination. The measured electron-hole (e - h) recombination time is 12-26 ps and ambipolar diffusivity is 18-40 cm(2)/s for carrier excitation up to similar to 10(19) cm(-3). By comparing the heating of the front and back sides of the film, we put lower limits on the rate of heat transfer to the lattice, and by observing the decay of the plasma at the back of the film, we estimate the time scale of electron-hole recombination. We interpret each of these time scales within a common framework of electron-phonon scattering and find qualitative agreement between the various relaxation times observed. We find that the carrier density is not determined by the e - h plasma temperature after a few picoseconds. The diffusion and recombination become nonlinear with initial excitation greater than or similar to 10(20) cm(-3). DOI: 10.1103/PhysRevB.87.075429

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available