4.6 Article

First-order versus second-order phase transformation in AuZn

Journal

PHYSICAL REVIEW B
Volume 88, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.024110

Keywords

-

Funding

  1. National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]

Ask authors/readers for more resources

The first-order versus second-order nature of the phase transition in AuZn has been examined by first-principles calculations. The calculated elastic constants of the high-temperature B2 phase have a large anisotropy, which suggests a possible instability in this phase. The first-principles calculations were extended to finite temperature by including vibrational and electronic contributions to the free energy. A small free-energy barrier was found between the high- (B2) and low-temperature (R) phases, which indicates that this is a weak first-order phase transition. Finally, we find that the calculated theoretical transformation temperature and entropy change (small latent heat) are in excellent agreement with the experimental observations for a first-order transition. Based on the entropy calculations for both phases, the high- temperature phase is found to be stabilized by the contribution of low-energy phonon modes to the lattice entropy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available