4.6 Article

Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe

Journal

PHYSICAL REVIEW B
Volume 85, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.064108

Keywords

-

Funding

  1. U.S. Department of Energy at Pacific Northwest National Laboratory
  2. U.S. Department of Energy [DE-AC05-76RL01830]
  3. Office of Naval Research [N00014-09-1-0661]

Ask authors/readers for more resources

The energetics and length scales associated with the interaction between point defects (vacancies and self-interstitial atoms) and grain boundaries in bcc Fe was explored. Molecular statics simulations were used to generate a grain boundary structure database that contained approximate to 170 grain boundaries with varying tilt and twist character. Then, vacancy and self-interstitial atom formation energies were calculated at all potential grain boundary sites within 15 angstrom of the boundary. The present results provide detailed information about the interaction energies of vacancies and self-interstitial atoms with symmetric tilt grain boundaries in iron and the length scales involved with absorption of these point defects by grain boundaries. Both low- and high-angle grain boundaries were effective sinks for point defects, with a few low-Sigma grain boundaries (e.g., the Sigma 3{112} twin boundary) that have properties different from the rest. The formation energies depend on both the local atomic structure and the distance from the boundary center. Additionally, the effect of grain boundary energy, disorientation angle, and Sigma designation on the boundary sink strength was explored; the strongest correlation occurred between the grain boundary energy and the mean point defect formation energies. Based on point defect binding energies, interstitials have approximate to 80% more grain boundary sites per area and approximate to 300% greater site strength than vacancies. Last, the absorption length scale of point defects by grain boundaries is over a full lattice unit larger for interstitials than for vacancies (mean of 6-7 angstrom versus 10-11 angstrom for vacancies and interstitials, respectively).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available