4.6 Article

Control of magnetic, nonmagnetic, and superconducting states in annealed Ca(Fe1-xCox)2As2

Journal

PHYSICAL REVIEW B
Volume 85, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.224528

Keywords

-

Funding

  1. Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]
  2. State of Iowa through Iowa State University

Ask authors/readers for more resources

We have grown single-crystal samples of Co substituted CaFe2As2 using an FeAs flux and systematically studied the effects of annealing/quenching temperature on the physical properties of these samples. Whereas the as-grown samples (quenched from 960 degrees C) all enter the collapsed tetragonal phase upon cooling, annealing/quenching temperatures between 350 and 800 degrees C can be used to tune the system to low-temperature antiferromagnetic/orthorhomic or superconducting states as well. The progression of the transition temperature versus annealing/quenching temperature (T-T-anneal) phase diagrams with increasing Co concentration shows that, by substituting Co, the antiferromagnetic/orthorhombic and the collapsed tetragonal phase lines are separated and bulk superconductivity is revealed. We established a 3D phase diagram with Co concentration and annealing/quenching temperature as two independent control parameters. At ambient pressure, for modest x and T-anneal values, the Ca(Fe1-xCox)(2)As-2 system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available