4.6 Article

Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001)

Journal

PHYSICAL REVIEW B
Volume 85, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.184407

Keywords

-

Funding

  1. DAAD-HEC Pakistan
  2. DFG [ME-3570/1]
  3. BMBF through FEMTOSPEX
  4. Spanish Ministry of Science and Innovation [FIS2010-20979-C02-02]

Ask authors/readers for more resources

Here we report on the ultrafast magnetization dynamics of Gd(0001), which we investigated as a function of equilibrium temperature by employing the femtosecond time-resolved magneto-optical Kerr effect (MOKE) and modeling by the Landau-Lifshitz-Bloch equation in combination with the two-temperature model. Based on the observed temperature-dependent transient MOKE signals, we separate the magnetization dynamics into two regimes at delays of (i) a few picoseconds and (ii) several 100 femtoseconds. In the picosecond regime, the demagnetization time determined from the experiment increases with temperature from 0.8 ps at 50 K to 1.5 ps at 280 K. A successful description of this observation was achieved by considering the dynamics of the 4f spin system coupled to 5d conduction electrons within two coupling mechanisms: (a) through electronic scattering and (b) spin-flip scattering mediated by phonons. We conclude that at temperatures below the Debye temperature, a hot electron-mediated process describes the experimentally found demagnetization times of approximate to 0.8 ps well. At higher temperatures phonon-mediated processes have to be included to explain the 2 times longer demagnetization time. In the second regime at time delays of few 100 fs we find an increase in the MOKE rotation and ellipticity at 50 K at delays before demagnetization sets in. Above 50 K the transient changes in rotation and ellipticity are of opposite sign. We explain this behavior by competing magnetic and nonmagnetic contributions in the transient MOKE signals at these delays directly after optical excitation when excited phonons do not yet facilitate angular momentum transfer to the lattice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available