4.6 Article

Phonon-limited mobility in n-type single-layer MoS2 from first principles

Journal

PHYSICAL REVIEW B
Volume 85, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.115317

Keywords

-

Funding

  1. Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center
  2. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060]
  3. Lundbeck Foundation

Ask authors/readers for more resources

We study the phonon-limited mobility in intrinsic n-type single-layer MoS2 for temperatures T > 100 K. The materials properties including the electron-phonon interaction are calculated from first principles and the deformation potentials and Frohlich interaction in single-layer MoS2 are established. The calculated room-temperature mobility of similar to 410 cm(2)V(-1)s(-1) is found to be dominated by optical phonon scattering via intra and intervalley deformation potential couplings and the Frohlich interaction. The mobility is weakly dependent on the carrier density and follows a mu similar to T-gamma temperature dependence with gamma = 1.69 at room temperature. It is shown that a quenching of the characteristic homopolar mode, which is likely to occur in top-gated samples, increases the mobility with similar to 70 cm(2)V(-1)s(-1) and can be observed as a decrease in the exponent to. = 1.52. In comparison to recent experimental findings for the mobility in single-layer MoS2 (similar to 200 cm(2)V(-1)s(-1)), our results indicate that mobilities close to the intrinsic phonon-limited mobility can be achieved in two-dimensional materials via dielectric engineering that effectively screens static Coulomb scattering on, e.g., charged impurities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available