4.6 Article

Spin-orbit tuned metal-insulator transitions in single-crystal Sr2Ir1-xRhxO4 (0 ≤ x ≤ 1)

Journal

PHYSICAL REVIEW B
Volume 86, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.125105

Keywords

-

Funding

  1. NSF [DMR-0856234, EPS-0814194, DMR-1056536]
  2. Department of Energy [DE-FG02-98ER45707]
  3. Direct For Mathematical & Physical Scien [0856234] Funding Source: National Science Foundation
  4. Division Of Materials Research [0856234] Funding Source: National Science Foundation
  5. Division Of Materials Research
  6. Direct For Mathematical & Physical Scien [1056536] Funding Source: National Science Foundation
  7. EPSCoR
  8. Office Of The Director [814194] Funding Source: National Science Foundation

Ask authors/readers for more resources

Sr2IrO4 is amagnetic insulator driven by spin-orbit interaction (SOI) whereas the isoelectronic and isostructural Sr2RhO4 is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of the strong SOI in the iridate. Our investigation of structural, transport, magnetic, and thermal properties reveals that substituting 4d Rh4+ (4d(5)) ions for 5d Ir4+ (5d(5)) ions in Sr2IrO4 directly reduces the SOI and rebalances the competing energies so profoundly that it generates a rich phase diagram for Sr2Ir1-xRhxO4 featuring two major effects: (1) Light Rh doping (0 <= x <= 0.16) prompts a simultaneous and precipitous drop in both the electrical resistivity and the magnetic ordering temperature T-C, which is suppressed to zero at x = 0.16 from 240 K at x = 0. (2) However, with heavier Rh doping [0.24 < x < 0.85 (+/- 0.05)] disorder scattering leads to localized states and a return to an insulating state with spin frustration and exotic magnetic behavior that only disappears near x = 1. The intricacy of Sr2Ir1-xRhxO4 is further highlighted by comparison with Sr2Ir1-xRuxO4 where Ru4+ (4d(4)) drives a direct crossover from the insulating to metallic states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available