4.6 Article

Electronic and structural characterization of divacancies in irradiated graphene

Journal

PHYSICAL REVIEW B
Volume 85, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.121402

Keywords

-

Funding

  1. Spain's MICINN [MAT2010-14902, CSD2010-00024, CSD2007-00050]
  2. Comunidad de Madrid [S2009/MAT-1467]
  3. PHC Picasso [22885NH]
  4. MEC under FPU [AP-2004-1896]
  5. Spanish MEC

Ask authors/readers for more resources

We provide a thorough study of a carbon divacancy, a point defect expected to have a large impact on the properties of graphene. Low-temperature scanning tunneling microscopy imaging of irradiated graphene on different substrates enabled us to identify a common twofold symmetry point defect. Our first-principles calculations reveal that the structure of this type of defect accommodates two adjacent missing atoms in a rearranged atomic network formed by two pentagons and one octagon, with no dangling bonds. Scanning tunneling spectroscopy measurements on divacancies generated in nearly ideal graphene show an electronic spectrum dominated by an empty-states resonance, which is ascribed to a nearly flat, spin-degenerated band of pi-electron nature. While the calculated electronic structure rules out the formation of a magnetic moment around the divacancy, the generation of an electronic resonance near the Fermi level reveals divacancies as key point defects for tuning electron transport properties in graphene systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available