4.6 Article

Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena

Journal

PHYSICAL REVIEW B
Volume 85, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.085408

Keywords

-

Funding

  1. Polish Ministry of Science and Higher Education

Ask authors/readers for more resources

Thermoelectric effects in a double quantum dot system coupled to external magnetic/nonmagnetic leads are investigated theoretically. The basic thermoelectric transport characteristics, like thermopower, electronic contribution to heat conductance, and the corresponding figure of merit, have been calculated in terms of the linear response theory and Green function formalism in the Hartree-Fock approximation for Coulomb interactions. An enhancement of the thermal efficiency (figure of merit ZT) due to Coulomb blockade has been found. The magnitude of ZT is further considerably enhanced by quantum interference effects. Both the Coulomb correlations and interference effects lead to strong violation of the Wiedemann-Franz law. The influence of spin-dependent transport and spin bias on the thermoelectric effects (especially on Seebeck and spin Seebeck effects) is also analyzed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available