4.6 Article

Breakdown of Fermi liquid behavior at the (π,π)=2kF spin-density wave quantum-critical point: The case of electron-doped cuprates

Journal

PHYSICAL REVIEW B
Volume 86, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.155123

Keywords

-

Funding

  1. National Science Foundation [DMR-1103860]
  2. Austrian Science Fund (FWF)-Erwin Schrodinger Fellowship [J 3077-N16]
  3. MURI from AFOSR
  4. NSERC
  5. Tier I Canada Research Chair Program
  6. Rutgers University
  7. MIT-Harvard Center for Ultracold Atoms
  8. Direct For Mathematical & Physical Scien
  9. Division Of Materials Research [1103860] Funding Source: National Science Foundation

Ask authors/readers for more resources

Many correlated materials display a quantum-critical point between a paramagnetic and a spin-density wave (SDW) state. The SDW wave vector connects points, so-called hot spots, on opposite sides of the Fermi surface. The Fermi velocities at these pairs of points are in general not parallel. Here, we consider the case where pairs of hot spots coalesce, and the wave vector (pi,pi) of the SDW connects hot spots with parallel Fermi velocities. Using the specific example of electron-doped cuprates, we first show that Kanamori screening and generic features of the Lindhard function make this case experimentally relevant. The temperature dependence of the correlation length, the spin susceptibility, and the self-energy at the hot spots are found using the two-particle self-consistent theory and specific numerical examples worked out for band and interaction parameters characteristic of the electron-doped cuprates. While the curvature of the Fermi surface at the hot spots leads to deviations from perfect nesting, the pseudonesting conditions lead to drastic modifications of the temperature dependence of these physical observables: Neglecting logarithmic corrections, the correlation length. scales like 1/T, namely, z = 1 instead of the naive z = 2, the (pi,pi) static spin susceptibility chi like 1/root T, and the imaginary part of the self-energy at the hot spots like T-3/2. The correction T-1(-1)similar to T-3/2 to the Korringa NMR relaxation rate is subdominant. We also consider this problem at zero temperature, or for frequencies larger than temperature, using a field-theoretical model of gapless collective bosonic modes (SDW fluctuations) interacting with fermions. The imaginary part of the retarded fermionic self-energy close to the hot spots scales as -omega(3/2) ln omega. This is less singular than earlier predictions of the form -omega ln omega. The difference arises from the effects of umklapp terms that were not included in previous studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available