4.6 Article

Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces

Journal

PHYSICAL REVIEW B
Volume 83, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.245122

Keywords

-

Funding

  1. Lundbeck Foundation
  2. Danish Ministry of Science, Technology and Innovation
  3. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060]

Ask authors/readers for more resources

We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single-particle eigenstates can be expanded on a real space grid or in atomic-orbital basis for increased efficiency. The exchange-correlation kernel is treated at the level of the adiabatic local density approximation (ALDA) and crystal local field effects are included. The calculated static and dynamical dielectric functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001) surface with plasmon energies deviating by less than 0.2 eV. Finally, the method is applied to study the influence of substrates on the plasmon excitations in graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available