4.6 Article

Damping mechanisms in high-Q micro and nanomechanical string resonators

Journal

PHYSICAL REVIEW B
Volume 84, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.165307

Keywords

-

Funding

  1. European Community [211464-2]

Ask authors/readers for more resources

Resonant micro and nanostrings were found to have extraordinarily high quality factors (Qs). Since the discovery of the high Qs of silicon nitride nanostrings, the understanding of the underlying mechanisms allowing such high quality factors has been a topic of several investigations. So far it has been concluded that Q is enhanced due to the high energy stored in the string tension. In this paper, damping mechanisms in string resonators are systematically investigated by varying the geometry and the tensile stress of silicon nitride microstrings. The measured quality factors are compared to an analytical model for Q based on bending-related damping mechanisms. It is shown that internal material damping is limiting the quality factor of narrow strings with a width of 3 mu m. Q is strongly width dependent and clamping losses evidently seem to be the limiting damping mechanism for wider strings. It is further shown that Q is influenced by interference effects in the substrate and thus by the clamping of the macroscopic chip. A maximum quality factor of up to 7 million is presented for high-stress silicon nitride strings with a resonance frequency of 176 kHz.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available