4.6 Article

Direct measurement of quantum phases in graphene via photoemission spectroscopy

Journal

PHYSICAL REVIEW B
Volume 84, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.125422

Keywords

-

Funding

  1. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. Office of Naval Research MURI [N00014-09-1066]

Ask authors/readers for more resources

Quantum phases provide us with important information for understanding the fundamental properties of a system. However, the observation of quantum phases, such as Berry's phase and the sign of the matrix element of the Hamiltonian between two nonequivalent localized orbitals in a tight-binding formalism, has been challenged by the presence of other factors, e. g., dynamic phases and spin or valley degeneracy, and the absence of methodology. Here, we report a way to directly access these quantum phases, through polarization-dependent angle-resolved photoemission spectroscopy (ARPES), using graphene as a prototypical two-dimensional material. We show that the momentum-and polarization-dependent spectral intensity provides direct measurements of (i) the phase of the band wavefunction and (ii) the sign of matrix elements for nonequivalent orbitals. Upon rotating light polarization by pi/2, we found that graphene with a Berry's phase of n pi (n = 1 for single-and n = 2 for double-layer graphene for Bloch wavefunction in the commonly used form) exhibits the rotation of ARPES intensity by pi/n, and that ARPES signals reveal the signs of the matrix elements in both single- and double-layer graphene. The method provides a technique to directly extract fundamental quantum electronic information on a variety of materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available