4.6 Article

First-principles study on lithium metal borate cathodes for lithium rechargeable batteries

Journal

PHYSICAL REVIEW B
Volume 83, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.205127

Keywords

-

Funding

  1. Ministry of Education, Science and Technology [2010K001088]
  2. Ministry of Knowledge Economy, Republic of Korea
  3. KISTI [KSC-2009-S03-0011]
  4. Korea Evaluation Institute of Industrial Technology (KEIT) [10037920] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A computational study of the electrochemical properties of three isotopic LiMBO3 compounds (M = Mn, Fe, and Co) as cathode materials is conducted using state-of-the-art first-principles calculations. The calculation of the Li intercalation potentials of LiMBO3 predicts that the theoretical energy density (660-860 Wh kg(-1)) can be comparable to or even higher than the corresponding olivine phosphates (595 Wh kg(-1) for LiFePO4). In addition, the volume changes during cycling are notably low (less than 2% for M = Mn, Fe, and Co), which may be advantageous for the long-term cyclability of Li rechargeable batteries. An investigation of the electronic structure suggests that the small polaron is likely to be a main conductor of Li-x MBO3. A study of Li mobility in Li-x MBO3 crystal structures indicates that zigzag one-dimensional (1D) Li diffusion tunnels are present with reasonably low activation barriers for Li motion. However, relatively low antisite energy for Li-M site exchange is observed, indicating that the metal ions in the Li site can block the 1D Li diffusion path. This implies that the synthesis condition and nanosizing of the material can be critical for this class of electrode material to achieve high-power capability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available