4.6 Article

Quantum quenches in the Hubbard model: Time-dependent mean-field theory and the role of quantum fluctuations

Journal

PHYSICAL REVIEW B
Volume 83, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.165105

Keywords

-

Funding

  1. Italian Ministry of University and Research

Ask authors/readers for more resources

We study the nonequilibrium dynamics in the fermionic Hubbard model after a sudden change of the interaction strength. To this scope, we introduce a time-dependent variational approach in the spirit of the Gutzwiller ansatz. At the saddle-point approximation, we find at half filling a sharp transition between two different regimes of small and large coherent oscillations, separated by a critical line of quenches where the system is found to relax. Any finite doping washes out the transition, leaving aside just a sharp crossover. In order to investigate the role of quantum fluctuations, we map the model onto an auxiliary quantum Ising model in a transverse field coupled to free fermionic quasiparticles. Remarkably, the Gutzwiller approximation turns out to correspond to the mean-field decoupling of this model in the limit of infinite coordination lattices. The advantage is that we can go beyond mean field and include Gaussian fluctuations around the non-equilibrium mean-field dynamics. Unlike at equilibrium, we find that quantum fluctuations become massless and eventually unstable before the mean-field dynamical critical line, which suggests they could even alter qualitatively the mean-field scenario.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available