4.6 Article

Intravalley multiple scattering of quasiparticles in graphene

Journal

PHYSICAL REVIEW B
Volume 83, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.165437

Keywords

-

Funding

  1. Camille and Henry Dreyfus New faculty
  2. University of Miami

Ask authors/readers for more resources

We develop a theoretical description of intravalley scattering of quasiparticles in graphene from multiple short-range scatterers of size much greater than the carbon-carbon bond length. Our theory provides a method to rapidly calculate the Green's function in graphene for arbitrary configurations of scatterers. We demonstrate that noncollinear multiple scattering trajectories generate pseudospin rotations that alter quasiparticle interference, resulting in significant modifications to the shape, intensity, and pattern of the interference fringes in the local density of states (LDOS). We illustrate these effects via theoretical calculations of the LDOS for a variety of scattering configurations in single layer graphene. A clear understanding of impurity scattering in graphene is a step toward exploiting graphene's unique properties to build future devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available