4.6 Article

Controlling doping in graphene through a SiC substrate: A first-principles study

Journal

PHYSICAL REVIEW B
Volume 83, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.161405

Keywords

-

Funding

  1. U.S. Department of Energy [DE-AC36-08GO28308]
  2. National Science Foundation of China

Ask authors/readers for more resources

Controlling the type and density of charge carriers by doping is the key step for developing graphene electronics. However, direct doping of graphene is rather a challenge. Based on first-principles calculations, a concept of overcoming doping difficulty in graphene via substrate is reported. We find that doping could be strongly enhanced in epitaxial graphene grown on silicon carbide substrate. Compared to free-standing graphene, the formation energies of the dopants can decrease by as much as 8 eV. The type and density of the charge carriers of epitaxial graphene layer can be effectively manipulated by suitable dopants and surface passivation. More importantly, contrasting to the direct doping of graphene, the charge carriers in epitaxial graphene layer are weakly scattered by dopants due to the spatial separation between dopants and the conducting channel. Finally, we show that a similar idea can also be used to control magnetic properties, for example, induce a half-metallic state in the epitaxial graphene without magnetic impurity doping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available