4.6 Article

Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption

Journal

PHYSICAL REVIEW B
Volume 81, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.155413

Keywords

-

Ask authors/readers for more resources

We demonstrate that optical transparency of any two-dimensional system with a symmetric electronic spectrum is governed by the fine structure constant and suggest a simple formula that relates a quasiparticle spectrum to an optical absorption of such a system. These results are applied to graphene deposited on a surface of oxidized silicon for which we measure ellipsometric spectra, extract optical constants of a graphene layer and reconstruct the electronic dispersion relation near the K point using optical transmission spectra. We also present spectroscopic ellipsometry analysis of graphene placed on amorphous quartz substrates and report a pronounced peak in ultraviolet absorption at 4.6 eV because of a van Hove singularity in graphene's density of states. The peak is asymmetric and downshifted by 0.5 eV probably due to excitonic effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available