4.6 Article

Acoustic transmission line metamaterial with negative/zero/positive refractive index

Journal

PHYSICAL REVIEW B
Volume 82, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.094306

Keywords

-

Ask authors/readers for more resources

A one-dimensional acoustic negative refractive index metamaterial based on the transmission line approach is presented. This structure implements the dual transmission line concept extensively investigated in microwave engineering. It consists of an acoustic waveguide periodically loaded with membranes realizing the function of series capacitances and transversally connected open channels realizing shunt inductances. Transmission line based metamaterials can exhibit a negative refractive index without relying on resonance phenomena, which results in a bandwidth of operation much broader than that observed in resonant devices. In the present case, the negative refractive index band extends over almost one octave, from 0.6 to 1 kHz. The developed structure also exhibits a seamless transition between the negative and positive refractive index bands with a zero index at the transition frequency of 1 kHz. At this frequency, the unit cell is only one tenth of the wavelength. Simple acoustic circuit models are introduced, which allow efficient designs both in terms of dispersion and impedance, while accurately describing all the physical phenomena. Using this approach, a good matching at the structure terminations is achieved. Full-wave simulations, made for a 10-cell-long structure, confirm the good performances in terms of dispersion diagram, Bloch impedance, and reflection and transmission coefficients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available