4.6 Article

Simulating strongly correlated quantum systems with tree tensor networks

Journal

PHYSICAL REVIEW B
Volume 82, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.205105

Keywords

-

Funding

  1. SFB
  2. Quevadis
  3. Alexander von Humboldt foundation
  4. Hungarian Research Fund (OTKA) [K68340, K73455]
  5. ERC

Ask authors/readers for more resources

We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interactions in higher dimensions. Although the momentum-space and quantum-chemistry versions of the density-matrix renormalization group (DMRG) method have long been applied to such systems, the spatial topology of DMRG-based methods allows efficient optimizations to be carried out with respect to one spatial dimension only. Extending the matrix-product-state picture, we formulate a more general approach by allowing the local sites to be coupled to more than two neighboring auxiliary subspaces. Following [Y. Shi, L. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006)], we treat a treelike network ansatz with arbitrary coordination number z, where the z=2 case corresponds to the one-dimensional (1D) scheme. For this ansatz, the long-range correlation deviates from the mean-field value polynomially with distance, in contrast to the matrix-product ansatz, which deviates exponentially. The computational cost of the tree-tensor-network method is significantly smaller than that of previous DMRG-based attempts, which renormalize several blocks into a single block. In addition, we investigate the effect of unitary transformations on the local basis states and present a method for optimizing such transformations. For the 1D interacting spinless fermion model, the optimized transformation interpolates smoothly between real space and momentum space. Calculations carried out on small quantum chemical systems support our approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available