4.6 Article

Robust states in semiconductor quantum dot molecules

Journal

PHYSICAL REVIEW B
Volume 81, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.075322

Keywords

-

Funding

  1. Brazilian National Institute of Science and Technology

Ask authors/readers for more resources

Semiconductor quantum dots coherently driven by pulsed laser are fundamental physical systems which allow studying the dynamical properties of confined quantum states. These systems are attractive candidates for a solid-state qubit, which open the possibility for several investigations in quantum-information processing. In this work we study the effects of a specific decoherence process, the spontaneous emission of excitonic states, in a quantum dot molecule. We model our system considering a three-level Hamiltonian and solve the corresponding master equation in the Lindblad form. Our results show that the spontaneous emission associated with the direct exciton helps to build up a robust indirect exciton state. This robustness against decoherence allows potential applications in quantum memories and quantum gate architectures. We further investigate several regimes of physical parameters, showing that this process is easily controlled by tuning of external fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available