4.6 Article

Ideal diode equation for organic heterojunctions. I. Derivation and application

Journal

PHYSICAL REVIEW B
Volume 82, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.155305

Keywords

-

Funding

  1. Department of Energy, Office of Basic Energy Sciences [DE-SC0000957]
  2. Argonne-Northwestern Solar Energy Research (ANSER) Center [DE-SC0001059]
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  4. Air Force Office of Scientific Research
  5. Global Photonic Energy Corp.

Ask authors/readers for more resources

The current-voltage characteristics of organic heterojunctions (HJs) are often modeled using the generalized Shockley equation derived for inorganic diodes. However, since this description does not rigorously apply to organic semiconductor donor-acceptor (D-A) HJs, the extracted parameters lack a clear physical meaning. Here, we derive the current density-voltage (J-V) characteristic specifically for D-A HJ solar cells and show that it predicts the general dependence of dark current, open-circuit voltage (V(oc)), and short-circuit current (J(sc)) on temperature and light intensity as well as the maximum Voc for a given D-A material pair. We propose that trap-limited recombination due to disorder at the D-A interface leads to the introduction of two temperature-dependent ideality factors and show that this describes the dark current of copper phthalocyanine/C(60) and boron subphthalocyanine/C(60) cells at low temperature, where fits to the generalized Shockley equation break down. We identify the polaron pair recombination rate as a key factor that determines the J-V characteristics in the dark and under illumination and provide direct measurements of this process in our companion paper II [N. C. Giebink, B. E. Lassiter, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82, 155306 (2010)]. These results provide a general physical framework for interpreting the J-V characteristics and understanding the efficiency of both small molecule and polymer organic, planar and bulk HJ solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available