4.6 Article

Trapping of oxygen vacancies in the twin walls of perovskite

Journal

PHYSICAL REVIEW B
Volume 81, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.024109

Keywords

-

Funding

  1. U. K.'s NERC
  2. University of Cambridge
  3. Science Foundation Ireland Mathematics [06/MI/005]
  4. Natural Environment Research Council [NER/A/S/2003/00537] Funding Source: researchfish

Ask authors/readers for more resources

The binding and pairwise interaction of oxygen vacancies in the ferroelastic (100) twin walls of the orthorhombic phase of CaTiO3 perovskite (Pbnm) have been investigated by numerical simulations using empirical force fields. An oxygen vacancy finds it energetically favorable to reside inside a twin wall, particularly when bridging two titanium ions located in the twin-wall plane. In such case, the binding energy of the vacancy to the wall is 0.7 +/- 0.1 eV, the error bar reflecting variability within two different force fields. A different disposition of the vacancy in the wall sees its binding energy reduced by a factor of 2. This implies that depending on the relative time scales for twin-wall motion and for oxygen-vacancy diffusion, anelastic motion of twin walls can display two different energy dissipation mechanisms associated to these point defects. The strongest interactions among oxygen vacancies in a twin wall are due to short-range repulsion so that no defect clusters were found. The vacancy-wall binding energy is found to increase substantially with pressure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available