4.6 Article

Exact results on the quench dynamics of the entanglement entropy in the toric code

Journal

PHYSICAL REVIEW B
Volume 82, Issue 13, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.134303

Keywords

-

Ask authors/readers for more resources

We study quantum quenches in the two-dimensional Kitaev toric code model and compute exactly the time-dependent entanglement entropy of the nonequilibrium wave function evolving from a paramagnetic initial state with the toric code Hamiltonian. We find that the area law survives at all times. Adding disorder to the toric code couplings makes the entanglement entropy per unit boundary length saturate to disorder-independent values at long times and in the thermodynamic limit. There are order-one corrections to the area law from the corners in the subsystem boundary but the topological entropy remains zero at all times. We argue that breaking the integrability with a small magnetic field could change the area law to a volume scaling as expected of thermalized states but is not sufficient for forming topological entanglement due to the presence of an excess energy and a finite density of defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available