4.6 Article

Energy spectrum of graphene multilayers in a parallel magnetic field

Journal

PHYSICAL REVIEW B
Volume 82, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.82.205408

Keywords

-

Ask authors/readers for more resources

We study the orbital effect of a strong magnetic field parallel to the layers on the energy spectrum of the Bernal-stacked graphene bilayer and multilayers, including graphite. We consider the minimal model with the electron tunneling between the nearest sites in the plane and out of the plane. Using the semiclassical analytical approximation and exact numerical diagonalization, we find that the energy spectrum consists of two domains. In the low- and high-energy domains, the semiclassical electron orbits are closed and open, so the spectra are discrete and continuous, correspondingly. The discrete energy levels are the analogs of the Landau levels for the parallel magnetic field. They can be detected experimentally using electron tunneling and optical spectroscopy. In both domains, the electron wave functions are localized on a finite number of graphene layers, so the results can be applied to graphene multilayers of a finite thickness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available