4.6 Article

Symmetry and disorder of the vitreous vortex lattice in overdoped BaFe2-xCoxAs2: Indication for strong single-vortex pinning

Journal

PHYSICAL REVIEW B
Volume 81, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.014513

Keywords

-

Funding

  1. DFG-Forschergruppe [FOR 538]
  2. EPSRC U. K
  3. National Science Foundation [DMR-0454672]
  4. European Community [516858: HIPERCHEM]

Ask authors/readers for more resources

The disordered flux line lattice in single crystals of the slightly overdoped BaFe2-xCoxAs2 (x=0.19, T-c=23 K) superconductor is studied by magnetization measurements, small-angle neutron scattering, and magnetic force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex pinning precludes the formation of an ordered Abrikosov lattice. Instead, a vitreous vortex phase (vortex glass) with a short-range hexagonal order is observed. Statistical processing of MFM data sets lets us directly measure its radial and angular distribution functions and extract the radial correlation length zeta. In contrast to predictions of the collective pinning model, no increase in the correlated volume with the applied field is observed. Instead, we find that zeta decreases as (1.3 +/- 0.1)R-1 proportional to H-1/2 over four decades of the applied magnetic field, where R-1 is the radius of the first coordination shell of the vortex lattice. Such universal scaling of zeta implies that the vortex pinning in iron arsenides remains strong even in the absence of static magnetism. This result is consistent with all the real and reciprocal-space vortex-lattice measurements in overdoped as-grown BaFe2-xCoxAs2 published to date and is thus sample independent. The failure of the collective pinning model suggests that the vortices remain in the single-vortex pinning limit even in high-magnetic fields up to 9 T.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available