4.6 Article

Frustrated Bose condensates in optical lattices

Journal

PHYSICAL REVIEW B
Volume 81, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.014520

Keywords

-

Funding

  1. EPSRC [EP/C546814/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/C546814/1] Funding Source: researchfish

Ask authors/readers for more resources

We study the Bose-condensed ground states of bosons in a two-dimensional optical lattice in the presence of frustration due to an effective vector potential, for example, due to lattice rotation. We use a mapping to a large-S frustrated magnet to study quantum fluctuations in the condensed state. Quantum effects are introduced by considering a 1/S expansion around the classical ground state. The large-S regime should be relevant to systems with many particles per site. As the system approaches the Mott insulating state, the hole density becomes small. Our large-S results show that, even when the system is very dilute, the holes remain a (partially) condensed system. Moreover, the superfluid density is comparable to the condensate density. In other words, the large-S regime does not display an instability to noncondensed phases. However, for cases with fewer than 1/3 flux quantum per lattice plaquette, we find that the fractional condensate depletion increases as the system approaches the Mott phase, giving rise to the possibility of a noncondensed state before the Mott phase is reached for systems with smaller S.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available