4.6 Article

Magnetic properties of first-row element-doped ZnS semiconductors: A density functional theory investigation

Journal

PHYSICAL REVIEW B
Volume 80, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.115212

Keywords

-

Funding

  1. Irish Research Council for Science, Engineering and Technology (IRCSET)

Ask authors/readers for more resources

Based on first-principles calculations, we have investigated the magnetic properties of the first-row element-doped ZnS semiconductors. Calculations reveal that Be, B, and C dopants can induce magnetism while N cannot lead to spin polarization in ZnS. A possible explanation has been rationalized from the elements' electronegativity and interaction between dopant and host atoms. The total magnetic moments are 2.00, 3.16, and 2.38 mu(B) per 2 x 2 x 2 supercell for Be, B, and C doping, respectively, and ferromagnetic coupling is generally observed in these cases. The ferromagnetism of Be-, B-, and C-doped ZnS can be explained by hole-mediated s-p or p-p interactions' coupling mechanisms. The clustering effect was found to be present in Be-, B-, and C-doped ZnS but the degree is more obvious in the former two cases than in the latter case. Analysis revealed that C-doped ZnS displays better potential ferromagnetic behavior than Be-and B-doped ZnS due to its semimetallic characteristics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available