4.6 Article

Edge disorder and localization regimes in bilayer graphene nanoribbons

Journal

PHYSICAL REVIEW B
Volume 80, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.045308

Keywords

-

Ask authors/readers for more resources

A theoretical study of the magnetoelectronic properties of zigzag and armchair bilayer graphene nanoribbons (BGNs) is presented. Using the recursive Green's function method, we study the band structure of BGNs in uniform perpendicular magnetic fields and discuss the zero-temperature conductance for the corresponding clean systems. The conductance is quantized as 2(n+1)G(0) for the zigzag edges and nG(0) for the armchair edges with G(0) = 2e(2)/h being the conductance unit and n an integer. Special attention is paid to the effects of edge disorder. As in the case of monolayer graphene nanoribbons (GNR), a small degree of edge disorder is already sufficient to induce a transport gap around the neutrality point. We further perform comparative studies of the transport gap E-g and the localization length xi in bilayer and monolayer nanoribbons. While for the GNRs E-g(GNR) similar to 1/W, the corresponding transport gap E-g(BGN) for the bilayer ribbons shows a more rapid decrease as the ribbon width W is increased. We also demonstrate that the evolution of localization lengths with the Fermi energy shows two distinct regimes. Inside the transport gap, xi is essentially independent on energy and the states in the BGNs are significantly less localized than those in the corresponding GNRs. Outside the transport gap xi grows rapidly as the Fermi energy increases and becomes very similar for BGNs and GNRs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available