4.6 Article Proceedings Paper

Calculation of the angular dependence of the total electron yield

Journal

VACUUM
Volume 122, Issue -, Pages 255-259

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.vacuum.2015.04.010

Keywords

Electron emission; Total electron yield; Angular dependence; Modelling

Funding

  1. Fundacaopara a Ciencia e Tecnologia do Ministerio da Ciencia, Tecnologia e Ensino Superior (FCT/MCTES) [PEst-OE/FIS/UI0068/2011]
  2. Serbian Ministry of Education and Science [III 45005]
  3. CNES

Ask authors/readers for more resources

Secondary electron emission plays an important role in many applic. ations such as scanning electron microscopy, space applications and accelerator technologies. Secondary electron yield delta(E)at normal incidence of a primary electron beam is frequently modelled by the well-known semi-empirical law. However, this model is not used in a consistent way to predict the angular dependence. Additionally, neglecting the energy reflection has particular influence on the angular dependence of the secondary electron yield and therefore cannot be ignored. We propose here a simple approach to calculate delta(E) for any incident angle based on the experimental result achieved at normal incidence. The secondary electron yield is calculated according to the universal semi-empirical law, while a fraction of the electron energy deposited into the sample is calculated using a Monte Carlo simulation. A simple modification of the original model for calculating a total electron yield (i.e. the sum of the 'true' secondaries and backscattered electrons) is also presented. Very good agreement is observed between measurements and the calculation as long as the roughness is not significant The model works very well for both, low Z and high Z materials. In the case of rough samples this approach cannot predict the angular dependence of the total electron yield. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available