4.6 Article

Lattice field theory simulations of graphene

Journal

PHYSICAL REVIEW B
Volume 79, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.165425

Keywords

band structure; equations of state; Fermi level; graphene; lattice field theory; Monte Carlo methods

Funding

  1. National Science Foundation [PHY-0653312]
  2. U. S. DOE [DE-FC02-07ER41457]
  3. UNEDF SciDAC Collaboration [DE-FG-02-97ER41014]

Ask authors/readers for more resources

We discuss the Monte Carlo method of simulating lattice field theories as a means of studying the low-energy effective theory of graphene. We also report on simulational results obtained using the Metropolis and Hybrid Monte Carlo methods for the chiral condensate, which is the order parameter for the semimetal-insulator transition in graphene, induced by the Coulomb interaction between the massless electronic quasiparticles. The critical coupling and the associated exponents of this transition are determined by means of the logarithmic derivative of the chiral condensate and an equation-of-state analysis. A thorough discussion of finite-size effects is given, along with several tests of our calculational framework. These results strengthen the case for an insulating phase in suspended graphene, and indicate that the semimetal-insulator transition is likely to be of second order, though exhibiting neither classical critical exponents, nor the predicted phenomenon of Miransky scaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available