4.6 Article

Calculation of properties of crystalline lithium hydride using correlated wave function theory

Journal

PHYSICAL REVIEW B
Volume 80, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.165109

Keywords

-

Funding

  1. School of Chemistry at the University of Bristol

Ask authors/readers for more resources

The lattice parameter, bulk modulus, and cohesive energy of lithium hydride are calculated to very high accuracy through a combination of periodic and finite-cluster electronic structure calculations. The Hartree-Fock contributions are taken from earlier work in which plane-wave calculations were corrected for pseudo-potential errors. Molecular electronic structure calculations on finite clusters are then used to compute the correlation contributions and finite-size effects are removed through the hierarchical scheme. The systematic improvability of the molecular electronic structure methods makes it possible to converge the static cohesive energy to within a few tenths of a millihartree. Zero-point energy contributions are determined from density functional theory phonon frequencies. All calculated properties of lithium hydride and deuteride agree with empirical observations to within experimental uncertainty.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available