4.6 Article

Dynamics and switching processes for magnetic bubbles in nanoelements

Journal

PHYSICAL REVIEW B
Volume 79, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.224429

Keywords

magnetic bubbles; magnetic switching; nanostructured materials; perpendicular magnetic anisotropy

Funding

  1. Japanese Society for the Promotion of Science

Ask authors/readers for more resources

We study numerically the dynamics of a magnetic bubble in a disk-shaped magnetic element which is probed by a pulse of a magnetic field gradient. Magnetic bubbles are nontrivial magnetic configurations which are characterized by a topological (skyrmion) number N and they have been observed in mesoscopic magnetic elements with strong perpendicular anisotropy. For weak fields we find a skew deflection of the axially symmetric N=1 bubble and a subsequent periodic motion around the center of the dot. This gyrotropic motion of the magnetic bubble is shown here for the first time. Stronger fields induce switching of the N=1 bubble to a bubble which contains a pair of Bloch lines and has N=0. The N=0 bubble can be switched back to a N=1 bubble by applying again an external field gradient. Detailed features of the unusual bubble dynamics are described by employing the skyrmion number and the moments of the associated topological density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available