4.6 Article

Electronic transport properties of a tilted graphene p-n junction

Journal

PHYSICAL REVIEW B
Volume 80, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.155406

Keywords

-

Ask authors/readers for more resources

Spatial manipulation of current flow in graphene could be achieved through the use of a tilted p-n junction. We show through numerical simulation that a pseudo-Hall effect (i.e., nonequilibrium charge and current density accumulating along one of the sides of a graphene ribbon) can be observed under these conditions. The tilt angle and the p-n transition length are two key parameters in tuning the strength of this effect. This phenomenon can be explained using classical trajectory via ray analysis, and is therefore relatively robust against disorder. Lastly, we propose and simulate a three terminal device that allows direct experimental access to the proposed effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available