4.6 Article

Nonequilibrium cotunneling through a three-level quantum dot

Journal

PHYSICAL REVIEW B
Volume 79, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.045105

Keywords

Anderson model; Kondo effect; quantum dots; tunnelling

Ask authors/readers for more resources

We calculate the nonlinear cotunneling conductance through a quantum dot with three electrons occupying the three highest-lying energy levels. Starting from a three-orbital Anderson model, we apply a generalized Schrieffer-Wolff transformation to derive an effective Kondo model for the system. Within this model we calculate the nonequilibrium occupation numbers and the corresponding cotunneling current to leading order in the exchange couplings. We identify the inelastic cotunneling thresholds and their splittings with applied magnetic field, and make a qualitative comparison to recent experimental data on carbon nanotube and InAs quantum-wire quantum dots. Further predictions of the model such as cascade resonances and a magnetic-field dependence of the orbital level splitting are not yet observed but within reach of recent experimental work on carbon nanotube and InAs-nanowire quantum dots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available