4.6 Article

Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium

Journal

PHYSICAL REVIEW B
Volume 77, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.075133

Keywords

-

Ask authors/readers for more resources

The dependence of the strength of the electron-phonon coupling and the electron heat capacity on the electron temperature is investigated for eight representative metals, Al, Cu, Ag, Au, Ni, Pt, W, and Ti, for the conditions of strong electron-phonon nonequilibrium. These conditions are characteristic of metal targets subjected to energetic ion bombardment or short-pulse laser irradiation. Computational analysis based on first-principles electronic structure calculations of the electron density of states predicts large deviations (up to an order of magnitude) from the commonly used approximations of linear temperature dependence of the electron heat capacity and a constant electron-phonon coupling. These thermophysical properties are found to be very sensitive to details of the electronic structure of the material. The strength of the electron-phonon coupling can either increase (Al, Au, Ag, Cu, and W), decrease (Ni and Pt), or exhibit nonmonotonic changes (Ti) with increasing electron temperature. The electron heat capacity can exhibit either positive (Au, Ag, Cu, and W) or negative (Ni and Pt) deviations from the linear temperature dependence. The large variations of the thermophysical properties, revealed in this work for the range of electron temperatures typically realized in femtosecond laser material processing applications, have important implications for quantitative computational analysis of ultrafast processes associated with laser interaction with metals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available